. Advertisement .
..3..
. Advertisement .
..4..
Use the molecular orbital diagram shown to determine which of the following is most stable.
......... ADVERTISEMENT ......... ..8..
A. F22+
B. Ne22+
C. F22–
D. O22+
E. F2
A molecular orbital diagram is an qualitative tool for that explains chemical bonding in molecules with respect to molecular orbital theory generally along with the linear combination the atomic orbitals (LCAO) method in particular. The basic principle behind this theory is when molecules bond atoms and molecules, certain numbers of orbitals of the atomic scale join to form the identical amount of molecular orbitals however, they are not identical.
The bond order of a molecule is the number of bonds between the pair of atoms.
The measurement of bond order is used to measure the strength of a molecule.
A rise in bond order indicates an increase in bond strength, and therefore a stable compound.
Molecular orbital theory can be used to calculate bond order.
Molecular Orbital Theory
Molecular orbital theory holds electrons in the molecular orbital, unlike valence bond theory which has electrons in individual orbitals.
Molecular Orbitals
Molecular orbitals are linear combinations of atomic orbitals. These molecular orbitals can be divided into two types.
(i)bonding orbitals
(ii)antibonding orbitals
Molecular orbitals have a bond order:
[katex]{\rm{bond}}\,{\rm{order}}\,{\rm{ = }}\,\frac{{{\rm{(Number}}\,{\rm{of}}\,{\rm{bonding}}\,{\rm{electrons – Number}}\,{\rm{of}}\,{\rm{anti}}\,{\rm{bonding}}\,{\rm{electrons)}}}}{{\rm{2}}}[/katex]
General Molecular Orbital Diagram
[katex]\begin{array}{l}\\{\rm{Bond}}\,{\rm{order}}\,{\rm{of}}\,{{\rm{F}}_{\rm{2}}}^{{\rm{2 + }}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{8 – 4}}} \right)\\\\{\rm{ = 2}}\\\end{array}[/katex]
[katex]\begin{array}{l}\\{\rm{Bond}}\,{\rm{order}}\,{\rm{of}}\,{\rm{N}}{{\rm{e}}_{\rm{2}}}^{{\rm{2 + }}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{8 – 6}}} \right)\\\\{\rm{ = 1}}\\\end{array}[/katex]
[katex]\begin{array}{l}\\{\rm{Bond order of }} {{\rm{F}}_{\rm{2}}}^{{\rm{2 – }}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{8 – 8}}} \right)\\\\{\rm{ = 0}}\\\end{array}[/katex]
[katex]\begin{array}{l}\\{\rm{Bond}}\,{\rm{order}}\,{\rm{of}}\,{{\rm{O}}_{\rm{2}}}^{{\rm{2 + }}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{8 – 2}}} \right)\\\\{\rm{ = 3}}\\\end{array}[/katex]
[katex]\begin{array}{l}\\{\rm{Bond order of }}{{\rm{F}}_{\rm{2}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{8 – 6}}} \right)\\\\{\rm{ = 1}}\\\end{array}[/katex]
[katex]{{\rm{O}}_{\rm{2}}}^{{\rm{2 + }}}\,{\rm{is}}\,{\rm{most}}\,{\rm{stable}}{\rm{.}}[/katex]
Ans:
[katex]{{\rm{O}}_{\rm{2}}}^{{\rm{2 + }}}\,{\rm{is}}\,{\rm{most}}\,{\rm{stable}}{\rm{.}}[/katex]