. Advertisement .
..3..
. Advertisement .
..4..
......... ADVERTISEMENT ......... ..8..
What does the top pressure gauge read?
P= (in kPa)
Sign Up to our social questions and Answers Engine to ask questions, answer people’s questions, and connect with other people.
Login to our social questions & Answers Engine to ask questions answer people’s questions & connect with other people.
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
This equation is the Bernoulli equation.
Convert the pressure to Pascal first. Next, create the Bernoulli equation. To calculate the pressure at top, add the Bernoulli equation’s values for pressure, density and velocities to the question.
The equation of Bernoulli is:
[katex]{P_1} + \frac{1}{2}\rho {v_1}^2 + \rho g{h_1} = {P_2} + \frac{1}{2}\rho {v_2}^2 + \rho g{h_2}[/katex]
Here, [katex]{P_1}[/katex]
The pressure is on
[katex]\begin{array}{c}\\{P_1} = 200{\rm{ kPa}}\left( {\frac{{{{10}^3}{\rm{ Pa}}}}{{1{\rm{ kPa}}}}} \right)\\\\ = 200 \times {10^3}{\rm{ Pa}}\\\end{array}[/katex]
The tube’s height at the bottom is:
[katex]{h_1} = 0{\rm{ m}}[/katex]
The equation of Bernoulli is:
[katex]{P_1} + \frac{1}{2}\rho {v_1}^2 + \rho g{h_1} = {P_2} + \frac{1}{2}\rho {v_2}^2 + \rho g{h_2}[/katex]
Substitute 0m for [katex]{h_1}[/katex]
[katex]\begin{array}{c}\\{P_1} + \frac{1}{2}\rho {v_1}^2 + \rho g\left( 0 \right) = {P_2} + \frac{1}{2}\rho {v_2}^2 + \rho g{h_2}\\\\{P_1} + \frac{1}{2}\rho {v_1}^2 = {P_2} + \frac{1}{2}\rho {v_2}^2 + \rho g{h_2}\\\\{P_2} = {P_1} + \frac{1}{2}\rho \left( {{v_1}^2 – {v_2}^2} \right) – \rho g{h_2}\\\end{array}[/katex]
Substitute [katex]200 \times {10^3}{\rm{ Pa}}[/katex] for [katex]{P_1}[/katex], [katex]{900{\rm{ kg/}}{{\rm{m}}^3}}[/katex] for [katex]\rho[/katex], [katex]{2{\rm{ m/s}}}[/katex] for [katex]{v_1}[/katex], [katex]{9.8{\rm{ m/}}{{\rm{s}}^2}}[/katex] for [katex]{g}[/katex], [katex]{3{\rm{ m/s}}}[/katex] for [katex]{v_2}[/katex], [katex]10 m[/katex] for [katex]{h_2}[/katex]
[katex]\begin{array}{c}\\{P_2} = 200 \times {10^3}{\rm{ Pa}} + \frac{1}{2}\left( {900{\rm{ kg/}}{{\rm{m}}^3}} \right)\left( {{{\left( {2{\rm{ m/s}}} \right)}^2} – {{\left( {3{\rm{ m/s}}} \right)}^2}} \right) – \left( {900{\rm{ kg/}}{{\rm{m}}^3}} \right)\left( {9.8{\rm{ m/}}{{\rm{s}}^2}} \right)\left( {10{\rm{ m}}} \right)\\\\ = 200 \times {10^3}{\rm{ Pa}} – 2250{\rm{ kg/m}} \cdot {{\rm{s}}^2} – 88200{\rm{ kg/m}} \cdot {{\rm{s}}^2}\\\\ = 1.10 \times {10^5}{\rm{ Pa}}\\\\{P_2}{\rm{ = 110 kPa}}\\\end{array}[/katex]Ans:
The top position pressure is [katex]{\rm{110 kPa}}[/katex].