. Advertisement .
..3..
. Advertisement .
..4..
......... ADVERTISEMENT ......... ..8..
What is the magnetic flux through the loop shown in the figure?
Sign Up to our social questions and Answers Engine to ask questions, answer people’s questions, and connect with other people.
Login to our social questions & Answers Engine to ask questions answer people’s questions & connect with other people.
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
Magnetic flux through an area of a loop if the magnetic field is perpendicular.
[katex] \Phi_{\mathrm{B}}=B A [/katex]
The loop’s left side is dominated by magnetic flux.
[katex] \begin{aligned} \left(\Phi_{\mathrm{B}}\right)_{\mathrm{left}} &=(2 \mathrm{~T})\left(20 \mathrm{~cm} \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)\left(20 \mathrm{~cm} \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right) \\ &=0.08 \mathrm{~T} \cdot \mathrm{m}^{2} \end{aligned} [/katex]
The loop’s right side is dominated by magnetic flux.
[katex] \begin{aligned} \left(\Phi_{\mathrm{B}}\right)_{\mathrm{ight}} &=(1 \mathrm{~T})\left(20 \mathrm{~cm} \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)\left(20 \mathrm{~cm} \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right) \\ =& 0.04 \mathrm{~T} \cdot \mathrm{m}^{2} \end{aligned} [/katex]
The net flux through the loop, is
[katex] \begin{aligned} \Phi_{\text {net }} &=\left(\Phi_{\mathrm{B}}\right)_{\text {left }}-\left(\Phi_{\mathrm{B}}\right)_{\text {right }} \\ &=0.08 \mathrm{~T} \cdot \mathrm{m}^{2}-0.04 \mathrm{~T} \cdot \mathrm{m}^{2} \\ &=0.04 \mathrm{~T} \cdot \mathrm{m}^{2} \end{aligned} [/katex]
The net flux is oriented along the left magnetic field of the loop.