. Advertisement .

..3..

. Advertisement .

..4..

What is the magnetic flux through the loop shown in the figure?

♦ Relevant knowledge

When a loop is located in a particular area of magnetic field, so that it is parallel to it, the loop will have the highest possible magnetic flux for the magnetic field (

*B*). Magnetic flux (*Φ*) in this scenario is determined by:*Φ = B × A*where A is the area within the loop.
Magnetic flux through an area of a loop if the magnetic field is perpendicular.

[katex] \Phi_{\mathrm{B}}=B A [/katex]

The loop’s left side is dominated by magnetic flux.

[katex] \begin{aligned} \left(\Phi_{\mathrm{B}}\right)_{\mathrm{left}} &=(2 \mathrm{~T})\left(20 \mathrm{~cm} \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)\left(20 \mathrm{~cm} \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right) \\ &=0.08 \mathrm{~T} \cdot \mathrm{m}^{2} \end{aligned} [/katex]

The loop’s right side is dominated by magnetic flux.

[katex] \begin{aligned} \left(\Phi_{\mathrm{B}}\right)_{\mathrm{ight}} &=(1 \mathrm{~T})\left(20 \mathrm{~cm} \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)\left(20 \mathrm{~cm} \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right) \\ =& 0.04 \mathrm{~T} \cdot \mathrm{m}^{2} \end{aligned} [/katex]

The net flux through the loop, is

[katex] \begin{aligned} \Phi_{\text {net }} &=\left(\Phi_{\mathrm{B}}\right)_{\text {left }}-\left(\Phi_{\mathrm{B}}\right)_{\text {right }} \\ &=0.08 \mathrm{~T} \cdot \mathrm{m}^{2}-0.04 \mathrm{~T} \cdot \mathrm{m}^{2} \\ &=0.04 \mathrm{~T} \cdot \mathrm{m}^{2} \end{aligned} [/katex]

The net flux is oriented along the left magnetic field of the loop.